Copied to
clipboard

G = C40.31C23order 320 = 26·5

24th non-split extension by C40 of C23 acting via C23/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D8.9D10, C40.33D4, C20.52D8, C40.31C23, Q16.10D10, Dic20.14C22, D8.D56C2, C4○D8.3D5, C5⋊Q326C2, (C2×C10).11D8, C10.70(C2×D8), (C2×C8).99D10, C8.8(C5⋊D4), C55(Q32⋊C2), C20.4C87C2, C4.25(D4⋊D5), C20.193(C2×D4), (C2×C20).187D4, (C5×D8).9C22, C8.37(C22×D5), (C2×Dic20)⋊22C2, C52C16.4C22, C22.6(D4⋊D5), (C2×C40).105C22, (C5×Q16).10C22, C2.25(C2×D4⋊D5), (C5×C4○D8).4C2, C4.19(C2×C5⋊D4), (C2×C4).82(C5⋊D4), SmallGroup(320,822)

Series: Derived Chief Lower central Upper central

C1C40 — C40.31C23
C1C5C10C20C40Dic20C2×Dic20 — C40.31C23
C5C10C20C40 — C40.31C23
C1C2C2×C4C2×C8C4○D8

Generators and relations for C40.31C23
 G = < a,b,c,d | a40=c2=d2=1, b2=a20, bab-1=a-1, ac=ca, dad=a31, bc=cb, dbd=a25b, dcd=a20c >

Subgroups: 302 in 82 conjugacy classes, 35 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C10, C10, C16, C2×C8, D8, SD16, Q16, Q16, C2×Q8, C4○D4, Dic5, C20, C20, C2×C10, C2×C10, M5(2), SD32, Q32, C2×Q16, C4○D8, C40, Dic10, C2×Dic5, C2×C20, C2×C20, C5×D4, C5×Q8, Q32⋊C2, C52C16, Dic20, Dic20, C2×C40, C5×D8, C5×SD16, C5×Q16, C2×Dic10, C5×C4○D4, C20.4C8, D8.D5, C5⋊Q32, C2×Dic20, C5×C4○D8, C40.31C23
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, D10, C2×D8, C5⋊D4, C22×D5, Q32⋊C2, D4⋊D5, C2×C5⋊D4, C2×D4⋊D5, C40.31C23

Smallest permutation representation of C40.31C23
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 89 21 109)(2 88 22 108)(3 87 23 107)(4 86 24 106)(5 85 25 105)(6 84 26 104)(7 83 27 103)(8 82 28 102)(9 81 29 101)(10 120 30 100)(11 119 31 99)(12 118 32 98)(13 117 33 97)(14 116 34 96)(15 115 35 95)(16 114 36 94)(17 113 37 93)(18 112 38 92)(19 111 39 91)(20 110 40 90)(41 132 61 152)(42 131 62 151)(43 130 63 150)(44 129 64 149)(45 128 65 148)(46 127 66 147)(47 126 67 146)(48 125 68 145)(49 124 69 144)(50 123 70 143)(51 122 71 142)(52 121 72 141)(53 160 73 140)(54 159 74 139)(55 158 75 138)(56 157 76 137)(57 156 77 136)(58 155 78 135)(59 154 79 134)(60 153 80 133)
(1 66)(2 67)(3 68)(4 69)(5 70)(6 71)(7 72)(8 73)(9 74)(10 75)(11 76)(12 77)(13 78)(14 79)(15 80)(16 41)(17 42)(18 43)(19 44)(20 45)(21 46)(22 47)(23 48)(24 49)(25 50)(26 51)(27 52)(28 53)(29 54)(30 55)(31 56)(32 57)(33 58)(34 59)(35 60)(36 61)(37 62)(38 63)(39 64)(40 65)(81 139)(82 140)(83 141)(84 142)(85 143)(86 144)(87 145)(88 146)(89 147)(90 148)(91 149)(92 150)(93 151)(94 152)(95 153)(96 154)(97 155)(98 156)(99 157)(100 158)(101 159)(102 160)(103 121)(104 122)(105 123)(106 124)(107 125)(108 126)(109 127)(110 128)(111 129)(112 130)(113 131)(114 132)(115 133)(116 134)(117 135)(118 136)(119 137)(120 138)
(2 32)(3 23)(4 14)(6 36)(7 27)(8 18)(10 40)(11 31)(12 22)(15 35)(16 26)(19 39)(20 30)(24 34)(28 38)(41 71)(42 62)(43 53)(45 75)(46 66)(47 57)(49 79)(50 70)(51 61)(54 74)(55 65)(58 78)(59 69)(63 73)(67 77)(81 96)(82 87)(83 118)(84 109)(85 100)(86 91)(88 113)(89 104)(90 95)(92 117)(93 108)(94 99)(97 112)(98 103)(101 116)(102 107)(105 120)(106 111)(110 115)(114 119)(121 136)(122 127)(123 158)(124 149)(125 140)(126 131)(128 153)(129 144)(130 135)(132 157)(133 148)(134 139)(137 152)(138 143)(141 156)(142 147)(145 160)(146 151)(150 155)(154 159)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,89,21,109)(2,88,22,108)(3,87,23,107)(4,86,24,106)(5,85,25,105)(6,84,26,104)(7,83,27,103)(8,82,28,102)(9,81,29,101)(10,120,30,100)(11,119,31,99)(12,118,32,98)(13,117,33,97)(14,116,34,96)(15,115,35,95)(16,114,36,94)(17,113,37,93)(18,112,38,92)(19,111,39,91)(20,110,40,90)(41,132,61,152)(42,131,62,151)(43,130,63,150)(44,129,64,149)(45,128,65,148)(46,127,66,147)(47,126,67,146)(48,125,68,145)(49,124,69,144)(50,123,70,143)(51,122,71,142)(52,121,72,141)(53,160,73,140)(54,159,74,139)(55,158,75,138)(56,157,76,137)(57,156,77,136)(58,155,78,135)(59,154,79,134)(60,153,80,133), (1,66)(2,67)(3,68)(4,69)(5,70)(6,71)(7,72)(8,73)(9,74)(10,75)(11,76)(12,77)(13,78)(14,79)(15,80)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,49)(25,50)(26,51)(27,52)(28,53)(29,54)(30,55)(31,56)(32,57)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,65)(81,139)(82,140)(83,141)(84,142)(85,143)(86,144)(87,145)(88,146)(89,147)(90,148)(91,149)(92,150)(93,151)(94,152)(95,153)(96,154)(97,155)(98,156)(99,157)(100,158)(101,159)(102,160)(103,121)(104,122)(105,123)(106,124)(107,125)(108,126)(109,127)(110,128)(111,129)(112,130)(113,131)(114,132)(115,133)(116,134)(117,135)(118,136)(119,137)(120,138), (2,32)(3,23)(4,14)(6,36)(7,27)(8,18)(10,40)(11,31)(12,22)(15,35)(16,26)(19,39)(20,30)(24,34)(28,38)(41,71)(42,62)(43,53)(45,75)(46,66)(47,57)(49,79)(50,70)(51,61)(54,74)(55,65)(58,78)(59,69)(63,73)(67,77)(81,96)(82,87)(83,118)(84,109)(85,100)(86,91)(88,113)(89,104)(90,95)(92,117)(93,108)(94,99)(97,112)(98,103)(101,116)(102,107)(105,120)(106,111)(110,115)(114,119)(121,136)(122,127)(123,158)(124,149)(125,140)(126,131)(128,153)(129,144)(130,135)(132,157)(133,148)(134,139)(137,152)(138,143)(141,156)(142,147)(145,160)(146,151)(150,155)(154,159)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,89,21,109)(2,88,22,108)(3,87,23,107)(4,86,24,106)(5,85,25,105)(6,84,26,104)(7,83,27,103)(8,82,28,102)(9,81,29,101)(10,120,30,100)(11,119,31,99)(12,118,32,98)(13,117,33,97)(14,116,34,96)(15,115,35,95)(16,114,36,94)(17,113,37,93)(18,112,38,92)(19,111,39,91)(20,110,40,90)(41,132,61,152)(42,131,62,151)(43,130,63,150)(44,129,64,149)(45,128,65,148)(46,127,66,147)(47,126,67,146)(48,125,68,145)(49,124,69,144)(50,123,70,143)(51,122,71,142)(52,121,72,141)(53,160,73,140)(54,159,74,139)(55,158,75,138)(56,157,76,137)(57,156,77,136)(58,155,78,135)(59,154,79,134)(60,153,80,133), (1,66)(2,67)(3,68)(4,69)(5,70)(6,71)(7,72)(8,73)(9,74)(10,75)(11,76)(12,77)(13,78)(14,79)(15,80)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,49)(25,50)(26,51)(27,52)(28,53)(29,54)(30,55)(31,56)(32,57)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,65)(81,139)(82,140)(83,141)(84,142)(85,143)(86,144)(87,145)(88,146)(89,147)(90,148)(91,149)(92,150)(93,151)(94,152)(95,153)(96,154)(97,155)(98,156)(99,157)(100,158)(101,159)(102,160)(103,121)(104,122)(105,123)(106,124)(107,125)(108,126)(109,127)(110,128)(111,129)(112,130)(113,131)(114,132)(115,133)(116,134)(117,135)(118,136)(119,137)(120,138), (2,32)(3,23)(4,14)(6,36)(7,27)(8,18)(10,40)(11,31)(12,22)(15,35)(16,26)(19,39)(20,30)(24,34)(28,38)(41,71)(42,62)(43,53)(45,75)(46,66)(47,57)(49,79)(50,70)(51,61)(54,74)(55,65)(58,78)(59,69)(63,73)(67,77)(81,96)(82,87)(83,118)(84,109)(85,100)(86,91)(88,113)(89,104)(90,95)(92,117)(93,108)(94,99)(97,112)(98,103)(101,116)(102,107)(105,120)(106,111)(110,115)(114,119)(121,136)(122,127)(123,158)(124,149)(125,140)(126,131)(128,153)(129,144)(130,135)(132,157)(133,148)(134,139)(137,152)(138,143)(141,156)(142,147)(145,160)(146,151)(150,155)(154,159) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,89,21,109),(2,88,22,108),(3,87,23,107),(4,86,24,106),(5,85,25,105),(6,84,26,104),(7,83,27,103),(8,82,28,102),(9,81,29,101),(10,120,30,100),(11,119,31,99),(12,118,32,98),(13,117,33,97),(14,116,34,96),(15,115,35,95),(16,114,36,94),(17,113,37,93),(18,112,38,92),(19,111,39,91),(20,110,40,90),(41,132,61,152),(42,131,62,151),(43,130,63,150),(44,129,64,149),(45,128,65,148),(46,127,66,147),(47,126,67,146),(48,125,68,145),(49,124,69,144),(50,123,70,143),(51,122,71,142),(52,121,72,141),(53,160,73,140),(54,159,74,139),(55,158,75,138),(56,157,76,137),(57,156,77,136),(58,155,78,135),(59,154,79,134),(60,153,80,133)], [(1,66),(2,67),(3,68),(4,69),(5,70),(6,71),(7,72),(8,73),(9,74),(10,75),(11,76),(12,77),(13,78),(14,79),(15,80),(16,41),(17,42),(18,43),(19,44),(20,45),(21,46),(22,47),(23,48),(24,49),(25,50),(26,51),(27,52),(28,53),(29,54),(30,55),(31,56),(32,57),(33,58),(34,59),(35,60),(36,61),(37,62),(38,63),(39,64),(40,65),(81,139),(82,140),(83,141),(84,142),(85,143),(86,144),(87,145),(88,146),(89,147),(90,148),(91,149),(92,150),(93,151),(94,152),(95,153),(96,154),(97,155),(98,156),(99,157),(100,158),(101,159),(102,160),(103,121),(104,122),(105,123),(106,124),(107,125),(108,126),(109,127),(110,128),(111,129),(112,130),(113,131),(114,132),(115,133),(116,134),(117,135),(118,136),(119,137),(120,138)], [(2,32),(3,23),(4,14),(6,36),(7,27),(8,18),(10,40),(11,31),(12,22),(15,35),(16,26),(19,39),(20,30),(24,34),(28,38),(41,71),(42,62),(43,53),(45,75),(46,66),(47,57),(49,79),(50,70),(51,61),(54,74),(55,65),(58,78),(59,69),(63,73),(67,77),(81,96),(82,87),(83,118),(84,109),(85,100),(86,91),(88,113),(89,104),(90,95),(92,117),(93,108),(94,99),(97,112),(98,103),(101,116),(102,107),(105,120),(106,111),(110,115),(114,119),(121,136),(122,127),(123,158),(124,149),(125,140),(126,131),(128,153),(129,144),(130,135),(132,157),(133,148),(134,139),(137,152),(138,143),(141,156),(142,147),(145,160),(146,151),(150,155),(154,159)]])

44 conjugacy classes

class 1 2A2B2C4A4B4C4D4E5A5B8A8B8C10A10B10C10D10E10F10G10H16A16B16C16D20A20B20C20D20E20F20G20H20I20J40A···40H
order122244444558881010101010101010161616162020202020202020202040···40
size1128228404022224224488882020202022224488884···4

44 irreducible representations

dim11111122222222224444
type++++++++++++++-++-
imageC1C2C2C2C2C2D4D4D5D8D8D10D10D10C5⋊D4C5⋊D4Q32⋊C2D4⋊D5D4⋊D5C40.31C23
kernelC40.31C23C20.4C8D8.D5C5⋊Q32C2×Dic20C5×C4○D8C40C2×C20C4○D8C20C2×C10C2×C8D8Q16C8C2×C4C5C4C22C1
# reps11221111222222442228

Matrix representation of C40.31C23 in GL6(𝔽241)

190510000
1902400000
001123000
00111100
000011230
00001111
,
73920000
2251680000
0021824023946
0024023462
0023946218240
0046224023
,
24000000
02400000
000010
000001
001000
000100
,
24000000
02400000
001000
00024000
00002400
000001

G:=sub<GL(6,GF(241))| [190,190,0,0,0,0,51,240,0,0,0,0,0,0,11,11,0,0,0,0,230,11,0,0,0,0,0,0,11,11,0,0,0,0,230,11],[73,225,0,0,0,0,92,168,0,0,0,0,0,0,218,240,239,46,0,0,240,23,46,2,0,0,239,46,218,240,0,0,46,2,240,23],[240,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[240,0,0,0,0,0,0,240,0,0,0,0,0,0,1,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,1] >;

C40.31C23 in GAP, Magma, Sage, TeX

C_{40}._{31}C_2^3
% in TeX

G:=Group("C40.31C2^3");
// GroupNames label

G:=SmallGroup(320,822);
// by ID

G=gap.SmallGroup(320,822);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,254,387,675,185,192,1684,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^40=c^2=d^2=1,b^2=a^20,b*a*b^-1=a^-1,a*c=c*a,d*a*d=a^31,b*c=c*b,d*b*d=a^25*b,d*c*d=a^20*c>;
// generators/relations

׿
×
𝔽